
Cyclic feeding interactions between finite-state mal-rules:
an algorithm for the optimal grouping and ordering of mal-rules

Robert Reynolds†‡, Laura Janda†, Tore Nesset†
† UiT–Arctic University of Norway ‡ Brigham Young University

Tromsø, Norway Provo, UT, USA

Abstract

Intelligent Language Tutoring Systems typically attempt to automatically diagnose learner errors in order
to provide individualized feedback. One common approach is the use of mal-rules to extend norma-
tive grammars by licensing specific types of learner errors. In finite-state morphologies, mal-rules can
be implemented as two-level rules or replace rules. However, unlike the phonological rules of natural
languages, mal-rules do not necessarily behave as a coherent system, especially with respect to feed-
ing interactions. Using examples from learner errors attested in the RULEC corpus of Russian learner
texts, we illustrate the problem of cyclic feeding interactions that can occur between mal-rules. We then
describe a formal algorithm for identifying an optimal ordering for mal-rules to be applied to a transducer.

Keywords: Learner errors, mal-rules, Russian, rule ordering, finite-state transducer

1. Introduction

Intelligent Language Tutoring Systems (ILTS) automatically analyze language produced by a learner in order to provide
individualized feedback. Examples of ILTS include E-Tutor (Heift 2010), Robo-Sensei (Nagata 2009), TAGARELA
(Amaral and Meurers 2011), the i-tutor (Choi 2016), the FeedBook (Meurers et al. 2019). Unlike a spell-checker, which
merely suggests correct forms, an ILTS can provide remedial explanation and examples to help the learner understand
why a given form is incorrect, or how to correct the error. This article is connected to recent work on a new ILTS:
Russian Mentor for Orthographic Rules (RuMOR) (Reynolds et al. 2022).1

In order to provide this information, an ILTS must “abstract away from the specific string entered by the learner
to more general classes of properties by automatically analyzing the learner input using NLP algorithms and resources”
(Meurers 2020). This article is concerned with one particular approach to learner language analysis: mal-rules. Mal-
rules are purposefully mal-formed rules that produce the same kinds of errors that learners make. By applying such
rules to existing analyzers or parsers, we license learner errors, which can then be recognized by the system. In this
way, we are able to analyze structures that are absent from normative Natural Language Processing (NLP) systems.

Mal-rules can interact with other rules in ways that violate the coherence of the rule system as a whole. This can
pose technical issues for systems that integrate a large number of mal-rules. A simple demonstration of this problem is
misspellings caused by learners’ failure to distinguish two sounds in the target language. For example, many learners
of Russian do not distinguish between the letters ш and щ (š and šč in transcription) or their respective sounds, [ù]
and [C:]. This confusion would lead to the following errors: xoroščo (c.f., xorošo ‘good’) or piša (c.f., pišča ‘food’).
Modeling these kinds of errors might require two rules, as shown in (1).

(1) a. šč → š (and add the tag +shch2sh)

b. š → šč (and add the tag +sh2shch)

Applying these rules sequentially to the word pišča would result in the analyses shown in (2).

(2) a. pišča : pišča

b. pišča+shch2sh : piša

c. pišča+shch2sh+sh2shch : pišča

As can be seen in (2), applying rule (1a) to (2a) results in (2b), which is the expected error, with the appropriate
tag. However, because the first rule feeds into the second, when rule (1b) is subsequently applied to the lexicon, it

1https://icall.byu.edu/rumor

© Robert Reynolds, Laura Janda, Tore Nesset. Nordlyd 46.1: 219—229, Morfologi, målstrev og maskinar: Trond Trosterud {fyller |
täyttää | deavdá | turns} 60!, edited by Lene Antonsen, Sjur Nørstebø Moshagen and Øystein A. Vangsnes. Published at UiT The
Arctic University of Norway. http://septentrio.uit.no/index.php/nordlyd https://doi.org/10.7557/12.6306

This work is licensed under a Creative Commons “Attribution-NonCommercial 4.0 International” li-
cense.

https://icall.byu.edu/rumor
http://septentrio.uit.no/index.php/nordlyd
https://doi.org/10.7557/12.6306
https://creativecommons.org/licenses/by-nc/4.0/deed.en
https://creativecommons.org/licenses/by-nc/4.0/deed.en

ALGORITHM FOR CYCLIC FEEDING INTERACTIONS

converts (2b) back into the original, correct wordform (note that (2b) and (2c) have identical surface forms). The result
is an analyzer that would return two analyses for the surface form pišča, one with its correct normative reading, and
one with two contradictory error tags. Reversing the order of the rules would fix the problem for pišča, but then the
word xorošo would have an analogous problem. We refer to this set of circumstances as a cyclic feeding interaction.
Although two-rule cycles, such as this example, are the most common, cyclic feeding interactions can involve any
number of rules. Furthermore, a given rule can be part of any number of cycles.

Our use of the term cycle is not connected to uses in Cyclic Phonology and related generative frameworks. Their
use of the term cyclic stems from the work of Chomsky et al. (1956) in their analysis of English word stress. In research
inspired by their work, cycles are iterative application of the same rule(s) at increasingly larger morphosyntactic units.
In contrast, our use of the term cycle is taken from Graph Theory, as discussed in Section 2.2. We represent rules in
a graph, where each rule is a node in the network, and feeding interactions between rules are represented as directed
edges (arrows) between nodes. In this representation, a cycle is a relation between rules where feeding interactions
ultimately lead back to the original form. As discussed in Section 2.1, some researchers name this a “mutual feeding”
relation, but we avoid this term because it implies that only two rules are involved in the interaction.

1.1. Acyclic feeding interactions

We have seen that cyclic feeding relations can be problematic, but acyclic feeding interactions are also consequential
for rule interactions. The toy rules in (3) are an example of rules in a feeding order. Because they are in a feeding order,
the analyzer would recognize wordforms with both errors on the same word (e.g. cat+a2o+o2u : cut). However, if the
order of the rules is reversed (a counterfeeding order), the analyzer would fail to recognize this interaction of errors. In
order to model mal-rule interactions, it is important to optimize the order of all the rules to maximize the number of
rules in feeding orders (and minimize the number of rules in counter-feeding orders). Given that a set of n rules can be
arranged in n! different permutations, an algorithm that can approach this task automatically would be a boon to rule
authors.2

(3) a. a → o (and add the tag +a2o)

b. o → u (and add the tag +o2u)

1.2. Article structure

In this article, we present a formal algorithm, implemented as an open-source python script,3 to block cyclic feeding
interactions. In addition, our algorithm assesses the consequences of ordering acyclic feeding interactions, and suggests
an ordering of errors to optimize the feeding interactions of such rules.

In Section 2, we discuss related research in three fields: generative phonology (§2.1), mal-rules (§2.3), and
Graph Theory (§2.2). In Section 3, we describe the algorithm. In Section 4, we apply the algorithm to a real-world set
of mal-rules modeling Russian learner orthographic and morphological errors. Finally, in Section 5, we summarize our
contribution and outline a few paths for future work.

2. Related work

2.1. Generative approaches to feeding and bleeding orders

The terms feeding order and bleeding order were first introduced by Kiparsky (1968). A feeding order is an ordering of
two rules such that the first rule generates new contexts in which the second order applies. Stated negatively, for some
words the second rule would not apply if the first rule had not created the right context. When two rules could have a
feeding order, but they are not in the right order for a feeding interaction to occur, they are said to be in a counterfeeding

2It is worth noting that rule interactions of this kind can rapidly explode the size of a transducer, which could strain computational
resources. In this case, one might wish to avoid modeling mal-rule interactions in order to keep the transducer smaller. This can be
achieved by reversing the optimal feeding order to produce the optimal counter-feeding order.

3https://github.com/reynoldsnlp/xfst_malrule_ordering

220

https://github.com/reynoldsnlp/xfst_malrule_ordering

ROBERT REYNOLDS, LAURA JANDA, TORE NESSET

order. Whereas a feeding order is a timely application of a feeding interaction, a counterfeeding order can be said to be
a tardy application of a feeding interaction.

A bleeding order is an ordering of two rules such that the first rule destroys contexts in which the second rule
applies. In other words, for some words the second rule would apply if not for the first rule. Just as with feeding
interactions, if two rules could have a bleeding order, but they are in the wrong order for a bleeding interaction to occur,
they are in a counterbleeding order. A summary of these interactions is given in Table 1. In this article, we focus only
on feeding interactions.

Chronology
timely tardy

Interference excitatory feeding counterfeeding
inhibitory bleeding counterbleeding

Table 1: Types of rule interaction

Generative linguists have wrestled with the problem of cyclic feeding orders, albeit for different reasons than
the present article. For their theories, cyclic feeding interactions (also known as “mutual” feeding interactions) pose
problems for explanatory power, parsimony (i.e. Occam’s Razor), and learnability. For example, one mechanism that
can be used to solve the problem of cyclic/mutual feeding is disjunctive ordering (Chomsky and Halle 1968), which
uses braces/brackets/parentheses to define a schema from which only one rule can be applied. Similarly, the Elsewhere
Condition (Kiparsky 1973) was put forth as an alternative to disjunctive ordering.

Pullum (1976) expresses suspicion of derivations of the type A → B → A, which he calls “Duke-of-York deriva-
tions.”4 He argues that in most cases, Duke-of-York derivations should be avoided on the grounds of parsimony, but he
also claims that there are cases in which a Duke-of-York derivation is either simpler than the alternatives or the only
possible explanation. However, McCarthy (2003) argues that the Duke-of-York phenomena described in the literature
are vacuous because the intermediate step is not necessary. He claims that non-vacuous Duke-of-York phenomena do
not exist in natural language.

It is worth emphasizing that the motivations behind the discussion of cyclic/mutual feeding orders of generative
grammars are very different from those of the current article. First and foremost, mal-rules are not intended to behave
as a coherent, parsimonious, learnable system of generalizations. Each individual mal-rule represents its own self-
contained deviation from a normative grammar. As such, the output of each mal-rule is a spelled out, final wordform.
To borrow from the analogy of the Duke of York referenced in Footnote 4, in a generative grammar the Duke of York’s
intermediate top-of-the-hill is just an inefficient detour. However, in a mal-rule approach to morphological analysis,
the top-of-the-hill is an important waypoint along many possible paths an error analysis might take. The problem with
mal-rules only arises if a cycle of waypoints leads back to where we came from, because the error tags, which record
the path of errors taken, become both self-contradictory and redundant.

Researchers in finite-state morphology have developed a number of solutions to solve the same kinds of prob-
lems described by generativists. A two-level morphology (Koskenniemi 1983) compiles all phonological rules into one
transducer and can thereby apply all of the rules to the lexicon simultaneously. For example, Karttunen (1993) demon-
strates a number of two-level solutions, including one that functions similarly to the disjunctive ordering proposed by
Chomsky and Halle (1968). Such applications of two-level morphology are not relevant to the problem of cyclic feed-
ing interactions among mal-rules because they do not allow for keeping and tagging intermediate forms. Individual
mal-rules can be implemented as two-level rules, as discussed in Section 2.3 below, but two-level rules cannot solve the
problem of cyclic feeding interactions between mal-rules.

2.2. Cycle detection (Graph Theory)

Graph Theory is the study of pairwise relations between objects, typically as part of a network of such relations. We
represent feeding relations as directed graphs, where edges go from a given rule’s node to the nodes of rules that it
feeds into. By using a graph representation, we are able to take advantage of previous research regarding the detection
of cycles.

4The name comes from the eponymous poem that exhibits a fruitless round trip: Oh, the grand old Duke of York, He had ten
thousand men; He marched them up to the top of the hill, And he marched them down again.

221

ALGORITHM FOR CYCLIC FEEDING INTERACTIONS

A cycle in a directed graph can be thought of as an infinite loop, where a given path leads back to its own
beginning node. More formally, a directed cycle is a non-empty path in which the only repeated nodes are the first and
last nodes, i.e. the first and last nodes in the path are the same node. When representing replace rule interactions as a
directed graph, cyclic feeding interactions are conveniently manifested as graph cycles.

Although more efficient algorithms have been put forward, cycles in a directed graph can be detected using
depth-first search. If a search finds an edge that points to an ancestor of the current node, the edge to that ancestor is
called a back edge. All the back edges which depth-first search skips over are part of cycles. Several algorithms have
been suggested that are more efficient than naive depth-first search, and we use the algorithm described in Johnson
(1975), as implemented in the python package networkx5 (Hagberg et al. 2008).

2.3. Mal-rules

Mal-rules are rules—orthographic, phonological, syntactic, etc.—that generate or license learner errors (Sleeman 1982,
Matthews 1992, Antonsen 2012, Reynolds et al. 2022). In the domain of finite-state morphological analysis, mal-rules
can be implemented in a number of ways. One example can be taken from Antonsen (2012), who implements mal-rules
as part of a two-level ruleset in the following way. First, error tags are added to a path in the lexicon (lexc) on both
the upper and lower sides. Then, the tag is removed from the lower side under specific conditions using twolc rules.
The analyses with the error tag in both levels are then removed from the transducer by means of XFST-style regular
expression rules. One drawback of this approach is that it does not always allow for combining multiple errors on the
same wordform, without significantly complicating interactions between twolc rules.

The approach assumed in this article is taken from Reynolds et al. (2022), whose mal-rules are implemented as
regular expression replace rules. Figure 1 illustrates this process. Importantly, this entire process is based on a pre-
existing transducer that contains the lexicon with all normative surface forms of the target language, along with their
morphosyntactic tags. The pre-existing transducer is used to initialize the main transducer discussed below.

A replace rule with the optional replacement operator (i.e. (->) or (<-)) is applied to the main transducer
(main) to yield an intermediate transducer (inter1) which contains everything from the main transducer, as well
as all forms generated by the rule.6 The main transducer is then subtracted from inter1 to yield an intermediate
transducer (inter2) with only those forms that were generated by the rule. Another rule is applied to add an error tag
to all readings in inter2 to yield the last intermediate transducer (inter3) which has only the forms generated by
the mal-rule, with error tags. The main transducer is then replaced by a disjunction of itself with inter3, and other
mal-rules can then be applied in the same fashion. In this way, mal-rules naturally stack on one another to yield forms
that are the combination of multiple errors.7

Figure 1: Workflow for adding error(s) to main transducer using regular expression replace rules

5https://networkx.org/
6If a wordform from the original lexicon or preceding mal-rules contains multiple instances of the letter(s) to be changed, the

optional replacement operator results in multiple outputs, including every combination of optional changes. In our approach, all of
these resulting wordforms are tagged identically, with only one error tag.

7It is possible to use twolc to achieve a similar result, where instead of applying a replace rule to a fully-compiled transducer,
you apply a modified form of the “normative” twolc rule set (with only the changes necessary to produce one type of error) to the
lexical transducer from lexc. Although this approach does give rules access to the underlying forms from the lexc transducer, it
does not naturally allow for error stacking, since it is based on the output of lexc.

222

https://networkx.org/

ROBERT REYNOLDS, LAURA JANDA, TORE NESSET

3. Methods: Blocking cyclic feeding interactions

While discussing our algorithm for blocking cyclic feeding interactions from our mal-rule application order and maxi-
mizing feeding interactions, we use the toy rules in (4) to illustrate the rule interactions.

(4) a. a simple acyclic feeding order (i → j → k)

b. a two-rule cyclic feeding order (m ↔ n)

c. a 3+-rule cyclic feeding order (a → e → i → o → u → a)

3.1. Generating feeding graph from regex rules

The first step of our algorithm is to convert our replace rules into a directed graph, with each node representing a rule,
and each directed edge representing a feeding relation from one rule to another. Our method assumes that the replace
rules are written as XFST regular expressions, one file per error type. In simple cases, each file may contain a single
replacement, and in more complex cases, it may contain multiple parallel replacements or the composition of multiple
replacements.

The replacement rule(s) for each error are extracted by reading each source file directly using a simple regular
expression to identify every instance of a token followed by one of the optional replacement operators ((->) or (<-)),
followed by another token. Currently, the contextual constraints of conditional replacement (e.g. the || L _ R in
the rule A (->) B || L _ R) are ignored.8 This means that the algorithm identifies all true feeding relations
(perfect recall), but in cases where constraints block rule interaction, the algorithm generates false positives (imperfect
precision). Although we do not yet have a way to automatically detect which constraints block feeding interactions, our
script can be run in interactive mode, where a human can manually override these false positives.

Figure 2: Directed graph gener-
ated from rules in (4)

The graph is generated by creating a node for each error. Then, for each
replace rule belonging to that error, a directed edge is added from that error to
any error whose rules take as input that rule’s output.9 An example based on
(4) is given in Figure 2. Note that in more complicated real-world examples with
multiple replacements per error, there may be more than one edge leaving a node.

3.2. Blocking cycles

Simple cycles in the rule graph can combine with other cycles to form more com-
plex cycles. As discussed below, our algorithm eliminates cycles by removing all
edges between two given nodes, and since removing simple cycles consequently
removes their more complex derivatives, our algorithm can focus on removing
only simple cycles in the rule graph. To do this, our algorithm starts by address-
ing cycles of shortest length first, then iteratively removing cycles of greater and
greater length until no cycles remain.

As discussed in Section 2.3, we assume an approach that adds errors seri-
ally, one after the other. Traditionally, feeding interactions are blocked by putting
rules in a counterfeeding order, but this solution does not work for two-rule cyclic
feeding interactions.

3.2.1. Blocking two-rule cycles

Two-rule cyclic feeding interactions (a.k.a. “mutual feeding interactions”) can-
not be placed in a counterfeeding order. Instead, they are added in parallel so
that neither rule can feed into the other, as shown in Figure 3. In this figure, both

8One reason for this is that transducer composition is non-commutative, so compositions of rule transducers are themselves depen-
dent on the rule ordering. This means that potentially every possible permutation of the rules must be tested to determine whether the
rules have a cyclic feeding interaction. This is left to future research, as discussed in Section 5.1.

9Errors that feed themselves are assumed to be false positives.

223

ALGORITHM FOR CYCLIC FEEDING INTERACTIONS

errors are based on the same version of main, and their outputs are added back into main at the same time, so they can
no longer interact. In terms of the rule graph, when two rules are added in parallel, all edges between those two nodes
are removed.

In the case of our toy example, the errors associated with rules b1 and b2 (m → n and n → m, respectively)
would be added in parallel.

Figure 3: Workflow for adding multiple errors in parallel to main transducer using regular expression
replace rules

3.2.2. Blocking cycles with more than two rules

In our toy example, the vowel cycle (a → e → i → o → u → a) represents a cycle of more than 2 rules.
Cycles composed of more than 2 rules can be be broken by removing only one feeding interaction from the cycle. This
can be achieved by putting two rules in a counterfeeding order. For example, if e → i were ordered before a → e,
then they would be in a counterfeeding order, their feeding interaction would not be manifested, and the cycle would
be broken. This is ideal for scenarios in which the optimal ordering described in Section 3.3 below naturally places any
two of these rules in a counterfeeding order.

Another approach is to simply add the rules in parallel, as is done with two-rule cyclic feeding interactions.
Depending on what parallelized rule sets already exist, parallelizing yet another pair of errors could have unwanted
consequences, such as merging two existing parallelized rule sets. For example, if two rule sets already exist, {A, B}
and {C, D}, then parallelizing A and C would result in merging the two sets into one, which would make it impossible
for these errors to stack. The larger the existing rule sets, the greater the impact on stacking.

This scenario poses a dilemma which can only be resolved arbitrarily. Either merge the rule sets to add a large
number of errors in parallel (which limits error stacking), or force a counterfeeding order to override the optimal feeding
order discussed below is Section 3.3 (which also limits stacking). Here the user should weigh the relative impacts of
these approaches on stacking.

Since we already use parallel addition for avoiding two-rule cycles, we default to the same mechanism for
blocking cycles with more than two rules. The algorithm can randomly select which two rules to add in parallel, but
in interactive mode, the user can manually select the rules (either to add in parallel or to force into a counterfeeding
order). In theory, adding any two rules from the cycle in parallel would break the cycle, but in order to maximize the
remaining feeding interactions (in the same spirit as Section 3.3 below) we limit the options to removing rules that are
adjacent in the cycle.

224

ROBERT REYNOLDS, LAURA JANDA, TORE NESSET

3.3. Methods: Maximizing feeding order

As long as cyclic feeding interactions are effectively blocked, it is usually advantageous to maximize the feeding order
of mal-rules so that all possible rule interactions are modeled. In order to estimate the order of rules that maximizes the
feeding order, we leverage the work of Gansner et al. (1993), Ellson et al. (2002), whose graph visualization work is
implemented in the popular graphviz10 utility. We are most interested in the dot algorithm, which is used to render
hierarchical drawings of directed graphs.

The first pass of the dot algorithm determines the optimal rank assignment of each node consistent with its
edges. Roughly speaking, this means that nodes with the most incoming edges are placed at the bottom of the image
and nodes with the fewest incoming edges are placed at the top. The result is that the overall flow of the graph runs
from top to bottom. All nodes that share the same rank are assigned the same y-coordinates, so the y-coordinate in the
output of the dot algorithm can be interpreted as a proxy for its rank. Therefore, ordering the mal-rules according to
their y-coordinates from top to bottom will optimize their feeding interactions, since the top-most rules have the fewest
incoming edges.

The final rule ordering and grouping output by the algorithm takes the order from the dot algorithm, and
integrates each of the parallelized rule sets by replacing the first instance of one of its members with the entire set. For
example, if the rank order from the dot algorithm for our toy example were [b1, b2, c2, a1, c3, a2, c4,
a3, c5, c1] and the parallelized rule sets were [{b1, b2}, {c1, c2}], then the final ordering/grouping
would be [{b1, b2}, {c1, c2}, a1, c3, a2, c4, a3, c5].

4. Example from Russian

In order to show a practical example of the algorithm described in Section 3, we apply it to those mal-rules described
in Reynolds et al. (2022) that are implemented as regular expression replace rules. A summary of these rules is given
in Table 2.

Tag Tag explanation Example (Correct form in parentheses)
a2o Misspelling (о should be а) озночает (означает)
e2je Misspelling (е should be э) ето (это)
Gem Should be just single, not geminate, letter рассширить (расширить)
H2S Misspelling (ь should be ъ) подьезд (подъезд)
i2j Misspelling (й should be и) миллйард (миллиард)
i2y Misspelling (ы should be и) блызко (близко)
Ikn Ikanje (и should be е/я/а) дитей (детей)
j2i Misspelling (и should be й) рабочии (рабочий)
je2e Misspelling (э should be е) проэкта (проекта)
NoGem Geminate letter is missing имено (именно)
NoSS Misspelling (ь is missing) болше (больше)
o2a Akanje (а should be о) каторый (который)
prijti Misspelling the stem of прийти прийду (приду)
revIkn Reversed Ikanje (e, а, я should be и) умерает (умирает)
sh2shch Misspelling (щ should be ш) лучще (лучше)
shch2sh Misspelling (ш should be щ) вообше (вообще)
ski по-∼ский instead of по-∼ски по-русский (по-русски)
SRc Spelling Rule ы>и (after ц) близнеци (близнецы)
SRy Spelling Rule ы>и книгы (книги)
y2i Misspelling (и should be ы) описивают (описывают)

Table 2: Russian mal-rules implemented as regular expression replace rules in Reynolds et al. (2022)

The graph generated from the feeding interactions of these mal-rules has 19 nodes and 139 edges, with 1347

10https://graphviz.org

225

https://graphviz.org

ALGORITHM FOR CYCLIC FEEDING INTERACTIONS

cycles. A visualization of the graph, generated by the dot algorithm of graphviz, is shown in Figure 4 at a small
scale for general reference, but note that digital versions of the document allow for zooming in.

Figure 4: Visualization of the Russian graph based on Table 2 before removing cycles

The algorithm identifies 12 two-rule feeding cycles, and constructs sets of rules that should be added in parallel,
as shown in (5). Although most of these pairs are obvious to humans, note that some of the sets have more than two
errors because some rules are involved in more than one cyclic feeding interaction.

(5) a. {sh2shch, shch2sh}

b. {a2o, o2a}

c. {Ikn, revIkn}

d. {i2j, j2i}

e. {SRy, y2i, i2y, SRc}

f. {je2e, e2je}

g. {ski, prijti, NoGem}

After removing the 12 two-rule cyclic feeding orders, the remaining graph has 19 nodes and 46 edges, with only
one cycle. Note that blocking 12 cycles resulted in the removal of 93 edges. This is because some errors include more
than one replace rule that can interact with other rules. For example, the NoGem error models when learners fail to
write both letters of a geminate, and includes 33 replaces rules, one for each letter of the alphabet.

Also note that although only 12 cycles (i.e., 93 edges) were removed, the total number of cycles in the graph
was reduced from 1347 to 1. This is because the majority of the cycles were complex combinations of shorter, simpler
cycles. By removing the edges of their component cycles, these complex cycles were also removed.

The only remaining cycle is prijti → j2i → SRc → i2j → prijti. The algorithm begins by
checking whether this cycle is already broken, either because of existing parallelizations, or because the dot algorithm
currently places the nodes in a counterfeeding order. In this case, the cycle is broken because two of the errors in this
cycle are already parallelized: i2j and j2i. Therefore, no further action is needed to break this cycle.

Although this cycle is already broken, it is worth thinking through what would happen if this were not the case.
Although one could randomly select an adjacent pair of nodes to add in parallel, we explore the consequences of this
decision. Adding prijti and j2i in parallel would have the same effect as adding i2j and prijti in parallel: the
sets in (5d) and (5g) would be merged into a set of five rules to be added in parallel. Similarly, blocking either j2i →
SRc or SRc → i2j would have the same effect regardless: the sets in (5d) and (5e) would be merged into a set of
six rules to be added in parallel.

In the spirit of maximizing non-cyclic feeding interactions, adding five errors in parallel could theoretically block
fewer feeding interactions than adding six errors in parallel. Otherwise, it could be worth considering which errors in
the existing sets are more or less likely to co-occur, preferably on the basis of empirical evidence, and to make the
selection to keep co-occuring errors in different sets so that they can stack on top of each other.

In actuality, none of this was necessary, since this cycle was already broken because of pre-existing paralleliza-
tions.

Finally, the algorithm plotted the final graph with no feeding cycles using the dot algorithm, as shown in Figure
5. Using the y-coordinates as proxy for feeding rank, the algorithm output the following order with parallelized groups

226

ROBERT REYNOLDS, LAURA JANDA, TORE NESSET

in curly braces: [H2S, NoSS, {NoGem, prijti, ski}, {e2je, je2e}, {Ikn, revIkn}, {i2j,
j2i}, {SRc, SRy, y2i, i2y}, {a2o, o2a}, {shch2sh,
sh2shch}].

Figure 5: Visualization of the Russian graph based on Table 2 after removing cycles

5. Conclusions

We have discussed the problem of cyclic feeding interactions between mal-rules, and introduced a new algorithm for
identifying an ordering (with parallelized groups) to block cyclic feeding interactions and maximize all other feeding
interactions. The algorithm can be run in interactive mode, which allows the user to override the automatic behavior of
the algorithm.

One unintended benefit of the algorithm is that by making feeding interactions explicit, the user may identify
ways to edit replace rules to make them more precise. For example, the NoGem rule mentioned in Section 4 was
originally written to delete geminate letters for every letter in the alphabet. However, some Russian letters never
appear twice in a row, including ь, ъ, and й. By including them in the error rules, unnecessary rule interactions were
introduced. The explicit inspection of feeding interactions, as facilitated by our algorithm, can lead to more precise
rule writing. Although the intended application of our algorithm is with mal-rules, it could be used for analyzing the
feeding interactions of any system of replace rules.

5.1. Future work

The proposed algorithm is focused on feeding interactions, but does not consider bleeding interactions. Future work
can explore how to integrate awareness of bleeding and counterbleeding interactions in the algorithm to maximize error
stacking.

As discussed in Section 3.1, our algorithm is not sensitive to conditional constraints on replace rules. The solution
to this problem will most likely depend on the existing regular expression compilers for XFST/HFST. For example, one
could compile transducers from the replace rules and then compose those transducers independent from any lexicon,
and examine the structure of the resulting transducer. However, transducer composition is not a commutative operation,

227

ALGORITHM FOR CYCLIC FEEDING INTERACTIONS

so the composition of the rules is itself dependent on the order in which the rules are composed. More research is
needed to determine whether this (or another) approach could be used to produce a graph of feeding interactions that is
sensitive to the conditional constraints of each rule.

Currently, parallelized error sets are added to the final rule ordering at the first occurrence of one of its members
in the ranks output by dot. Future work is needed to determine how this affects the feeding interactions of other
members of the set, and how to optimize the set’s position on that basis.

Lastly, the strategy of selecting which errors to parallelize in cyclic feeding interactions of more than two rules
is multi-faceted and complex. As discussed in Section 4, this includes the potential merging of existing error sets, as
well as the question of maximizing feeding interactions. It is difficult for users to know how a given decision would
interact with existing parallelization groups, as well as how it affects future decisions. Future work is needed to help
users quickly and easily assess the consequences of parallelizing each pair of errors with respect to these factors.

References

Amaral, Luiz and Detmar Meurers. 2011. On using intelligent computer-assisted language learning in real-life foreign
language teaching and learning. ReCALL 23 1: 4–24. https://doi.org/10.1017/S0958344010000261.

Antonsen, Lene. 2012. Improving feedback on l2 misspellings-an fst approach. In Proceedings of the SLTC 2012
workshop on NLP for CALL; Lund; 25th October; 2012, 080, pp. 1–10. Linköping University Electronic Press.

Choi, Inn-Chull. 2016. Efficacy of an ICALL tutoring system and process-oriented corrective feedback. Computer
Assisted Language Learning 29 2: 334–364. https://doi.org/10.1080/09588221.2014.960941.

Chomsky, Noam and Morris Halle. 1968. The sound pattern of English. Harper & Row.
Chomsky, Noam, Morris Halle, and Fred Lukoff. 1956. On accent and juncture in english. For Roman Jakobson 65:

80.
Ellson, John, Emden Gansner, Lefteris Koutsofios, Stephen C. North, and Gordon Woodhull. 2002. Graphviz— open

source graph drawing tools. In Graph Drawing, edited by Petra Mutzel, Michael Jünger, and Sebastian Leipert, pp.
483–484. Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45848-4_57.

Gansner, E.R., E. Koutsofios, S.C. North, and K.-P. Vo. 1993. A technique for drawing directed graphs. IEEE Transac-
tions on Software Engineering 19 3: 214–230. https://doi.org/10.1109/32.221135.

Hagberg, Aric, Pieter Swart, and Daniel S Chult. 2008. Exploring network structure, dynamics, and function using
networkx. Tech. rep., Los Alamos National Lab.(LANL), Los Alamos, NM (United States).

Heift, Trude. 2010. Developing an intelligent language tutor. CALICO Journal 27 3: 443–459.
https://doi.org/10.1558/cj.27.3.443-459.

Johnson, Donald B. 1975. Finding all the elementary circuits of a directed graph. SIAM Journal on Computing 4 1:
77–84.

Karttunen, Lauri. 1993. Finite-state constraints. The last phonological rule 6: 173–194.
Kiparsky, Paul. 1968. Linguistic universals and linguistic change. In Universals in linguistic theory, pp. 170–202. Holt,

Rinehart and Winston, New York.
Kiparsky, Paul. 1973. Elsewhere in phonology. In A Festschrift for Morris Halle, pp. 93–106. New York: Holt, Rinehart

and Winston.
Koskenniemi, Kimmo. 1983. Two-level morphology: A general computational model for word-form recognition and

production. Tech. rep., University of Helsinki, Department of General Linguistics.
Matthews, Clive. 1992. Going AI: Foundations of ICALL. Computer Assisted Language Learning 5 1: 13–31.

https://doi.org/10.1080/0958822920050103.
McCarthy, John J. 2003. Sympathy, cumulativity, and the duke-of-york gambit. The syllable in optimality theory pp.

23–76. https://doi.org/10.1017/CBO9780511497926.003.
Meurers, Detmar. 2020. Natural language processing and language learning. In The Concise Encyclopedia of Applied

Linguistics, edited by Carol A. Chapelle, pp. 817–831. Wiley, Oxford.
Meurers, Detmar, Kordula De Kuthy, Florian Nuxoll, Björn Rudzewitz, and Ramon Ziai. 2019. Scaling up intervention

studies to investigate real-life foreign language learning in school. Annual Review of Applied Linguistics 39: 161–
188. https://doi.org/10.1017/S0267190519000126.

Nagata, Noriko. 2009. Robo-Sensei’s NLP-based error detection and feedback generation. CALICO Journal 26 3:
562–579. https://doi.org/10.1558/cj.v26i3.562-579.

Pullum, Geoffrey K. 1976. The duke of york gambit. Journal of linguistics 12 1: 83–102.
https://doi.org/10.1017/S0022226700004813.

Reynolds, Robert, Laura Janda, and Tore Nesset. 2022. RuMOR: Russian Mentor for Orthographic Rules: ICALL to

228

http://dx.doi.org/10.1017/S0958344010000261
http://dx.doi.org/10.1080/09588221.2014.960941
http://dx.doi.org/10.1007/3-540-45848-4_57
http://dx.doi.org/10.1109/32.221135
http://dx.doi.org/10.1558/cj.27.3.443-459
http://dx.doi.org/10.1080/0958822920050103
http://dx.doi.org/10.1017/CBO9780511497926.003
http://dx.doi.org/10.1017/S0267190519000126
http://dx.doi.org/10.1558/cj.v26i3.562-579
http://dx.doi.org/10.1017/S0022226700004813

ROBERT REYNOLDS, LAURA JANDA, TORE NESSET

help learners of Russian become confident writers. Computational Linguistics and Text Complexity: a special issue
of the Russian Journal of Linguistics p. 15.

Sleeman, D. 1982. Inferring (mal) rules from pupil’s protocols. In Proceedings of ECAI-82, pp. 160–164. Orsay,
France.

229

	Section title
	Acyclic feeding interactions
	Article structure

	Related work
	Generative approaches to feeding and bleeding orders
	Cycle detection (Graph Theory)
	Mal-rules

	Methods: Blocking cyclic feeding interactions
	Generating feeding graph from regex rules
	Blocking cycles
	Blocking two-rule cycles
	Blocking cycles with more than two rules

	Methods: Maximizing feeding order

	Example from Russian
	Conclusions
	Future work

